Banach Space Techniques

Alonso Delfín

Functional Analysis Seminar University of Oregon

April 8, 2021

Schauder basis

Let E be a normed vector space.

Definition

We say that $(\xi_n)_{n=1}^{\infty}$, a nonzero sequence in *E*, is a **Schauder basis** for *E* if for each $\xi \in E$, there is a unique sequence of complex numbers $(\alpha_n)_{n=1}^{\infty}$ such that

$$\xi=\sum_{n=1}^{\infty}\alpha_n\xi_n,$$

that is,
$$\left(\sum_{n=1}^{k} \alpha_n \xi_n\right)_{k=1}^{\infty}$$
 converges in norm to ξ .

Schauder basis

If $(\xi_n)_{n=1}^{\infty}$ is a Schauder basis for a normed space E, then

$$\operatorname{span}(\xi_n)_n := \left\{ \sum_{n=1}^k \alpha_n \xi_n : \alpha_1, \dots, \alpha_k \in \mathbb{C} \right\}$$

is a dense subspace of E.

Corollary

Any normed space with a Schauder basis is separable.

However, Per Enflo constructed in 1973 a separable Banach space that does not have a Schauder basis.

Examples

• Ex. Fix $p \in [1, \infty)$. For each $n \ge 1$, let $\delta_n : \mathbb{Z}_{\ge 0} \to \mathbb{C}$ be given by

$$\delta_n(k)=\delta_{n,k}.$$

Then, $\delta_n \in \ell^p$ and $(\delta_n)_{n=1}^{\infty}$ is a Schauder basis for ℓ^p .

NonEx. Let (δ_n)[∞]_{n=1} be as above and let δ₀ : ℤ_{≥0} → ℂ be given by

$$\delta_0(k) = \frac{1}{k}$$

Then, $\delta_0 \in \ell^2$ but $(\delta_n)_{n=0}^\infty$ is **not** a Schauder basis for ℓ^2 :

$$\delta_0 = \sum_{n=1}^{\infty} \frac{\delta_n}{n}$$

Application

Coordinate Functionals

Fix a Schauder basis $(\xi_n)_{n=1}^{\infty}$ of a normed space *E*.

Definition

For each $n \geq 1$ we define a coordinate functional $\omega_n : E \to \mathbb{C}$ by

$$\omega_n\Big(\sum_{k=1}^\infty \alpha_k \xi_k\Big):=\alpha_n.$$

One checks that $\omega_n \in E^*$ and clearly $\omega_n(\xi_m) = \delta_{n,m}$.

Definition

For each $n \ge 1$ we define $s_n : E \to E$ by

$$s_n\left(\sum_{k=1}^{\infty}\alpha_k\xi_k\right):=\sum_{k=1}^n\alpha_k\xi_k.$$

Coordinate Functionals

Fix a Schauder basis $(\xi_n)_{n=1}^{\infty}$ of a normed space *E*. Then,

- $s_n \in \mathcal{L}(E)$ is an idempotent and therefore $||s_n|| \ge 1$.
- For each $\xi \in E$ we have

$$s_n(\xi) = \sum_{k=1}^n \omega_k(\xi) \xi_n.$$

• For each $\xi \in E$ we have $s_n \xi \to \xi$ and $\sup_{n \ge 1} \|s_n\| < \infty$. The constant $K_{(\xi_n)} := \sup_{n \ge 1} \|s_n\|$ is called the **basis constant** of the basis $(\xi_n)_{n=1}^{\infty}$. Of course $K_{(\xi_n)} \ge 1$.

Basic Sequence

Let E be a normed vector space.

Definition

We say that $(\xi_n)_{n=1}^{\infty}$ is a **basic sequence** if $(\xi_n)_{n=1}^{\infty}$ is a Schauder basis for $\overline{\operatorname{span}(\xi_n)}$, its closed linear span.

Every infinite dimensional Banach space contains a basic sequence. This was shown back in 1933 by Mazur. To recognize when a sequence of elements in a Banach space is a basic sequence we use the following test

Proposition (Grunblum's criterion)

A sequence $(\xi_n)_{n=1}^{\infty}$ of nonzero elements of a Banach space E is basic if and only if there is a positive constant K such that

$$\left\|\sum_{k=1}^m lpha_k \xi_k\right\| \leq K \left\|\sum_{k=1}^n lpha_k \xi_k\right\|$$

for every sequence of scalars (α_k) and all integers m,n such that $m \leq n$

Application

Equivalent Basic Sequences.

Let E and F be Banach spaces.

Definition

Two basic sequences $(\xi_n)_{n=1}^{\infty}$ in *E* and $(\eta_n)_{n=1}^{\infty}$ in *F* are said to be **isomorphically equivalent** if for any sequence of scalars $(\alpha_n)_{n=1}^{\infty}$

$$\sum_{n=1}^\infty lpha_n \xi_n$$
 converges if and only if $\sum_{n=1}^\infty lpha_n \eta_n$ converges

The closed graph theorem implies that $(\xi_n)_{n=1}^{\infty}$ and $(\eta_n)_{n=1}^{\infty}$ are isomorphically equivalent if and only if $\overline{\operatorname{span}(\xi_n)}$ and $\overline{\operatorname{span}(\eta_n)}$ are isomorphic via $\xi_n \mapsto \eta_n$.

Application

Equivalent Basic Sequences.

Equivalently, $(\xi_n)_{n=1}^{\infty}$ and $(\eta_n)_{n=1}^{\infty}$ are equivalent if there are constants $C_1, C_2 \in (0, \infty)$ such that

$$C_1 \Big\| \sum_{n=1}^{\infty} lpha_n \eta_n \Big\| \le \Big\| \sum_{n=1}^{\infty} lpha_n \xi_n \Big\| \le C_2 \Big\| \sum_{n=1}^{\infty} lpha_n \eta_n \Big\|$$

for all sequences of scalars $(\alpha_n)_{n=1}^{\infty}$.

Definition

When $C_1 = C_2 = 1$, we say that the basic sequences are **isometrically isomorphic**.

Equivalent Basic Sequences

There is a test to check whether a sequence is isomorphically equivalent to a given basic sequence:

Theorem (Principle of small perturbations)

Let $(\xi_n)_{n=1}^{\infty}$ be a basic sequence in a Banach space E. If $(\eta_n)_{n=1}^{\infty}$ is a sequence in E such that

$$2K_{(\xi_n)}\sum_{n=1}^{\infty}\frac{\|\xi_n - \eta_n\|}{\|\xi_n\|} = \delta < 1$$

Then $(\eta_n)_{n=1}^{\infty}$ is a basic sequence equivalent to $(\xi_n)_{n=1}^{\infty}$.

Applications

Principle of small perturbations

Sketch of Proof. Let $\omega_n : \overline{\text{span}(\xi_n)} \to \mathbb{C}$ the coordinate functionals. By Hahn Banach these maps extend to linear functionals $\omega_n : E \to \mathbb{C}$. The map $t : E \to E$ given by

$$t(\xi) = \xi + \sum_{n=1}^{\infty} \omega_n(\xi) (\eta_n - \xi_n)$$

is linear and bounded by $1 + \delta$. It's also easy to check that $||t - 1|| < \delta \leq 1$, whence t is invertible. Since t restricts to an isomorphism $\operatorname{span}(\xi_n) \to \operatorname{span}(\eta_n)$, the result follows. " \Box "

Block Basic Sequence

Let $(\xi_n)_{n=1}^{\infty}$ be a basic sequence in a Banach space *E*.

Definition

Let $\lambda_1 < \gamma_1 < \lambda_2 < \gamma_2 < \cdots$ be an increasing sequence of integers. For each $k \ge 1$ let

$$\eta_k := \sum_{j=\lambda_k}^{\gamma_k} eta_j \xi_j$$

be any non-zero vector in span $(\xi_{\lambda_k}, \ldots, \xi_{\gamma_k})$. Then $(\eta_k)_{k=1}^{\infty}$ is said to be a **block basic sequence** with respect to $(\xi_n)_{n=1}^{\infty}$.

Block Basic Sequence

Lemma

Let $(\eta_k)_{k=1}^{\infty}$ be a block basic sequence with respect to the basic sequence $(\xi_n)_{n=1}^{\infty}$. Then, $(\eta_k)_{k=1}^{\infty}$ is a basic sequence with basic constant at most $K_{(\xi_n)}$.

Proof. We prove this using Grunblum's criterion. Let $m \leq n$,

$$\left\|\sum_{k=1}^{m} \alpha_{k} \eta_{k}\right\| = \left\|\sum_{k=1}^{m} \alpha_{k} \sum_{j=\lambda_{k}}^{\gamma_{k}} \beta_{j} \xi_{j}\right\| = \left\|\sum_{j=1}^{\gamma_{m}} c_{j} \xi_{j}\right\| \le K_{(\xi_{n})} \left\|\sum_{j=1}^{\gamma_{n}} c_{j} \xi_{j}\right\|$$
$$= K_{(\xi_{n})} \left\|\sum_{k=1}^{n} \alpha_{k} \sum_{j=\lambda_{k}}^{\gamma_{k}} \beta_{j} \xi_{j}\right\| = K_{(\xi_{n})} \left\|\sum_{k=1}^{n} \alpha_{k} \eta_{k}\right\|$$

where each c_i is either $\alpha_k \beta_i$ or 0.

Applications

The Bessaga–Pełczyńki Selection Principle

Proposition (Bessaga–Pełczyńki Selection Principle, BPSP)

Let $(\xi_n)_{n=1}^{\infty}$ be a Schauder basis in a Banach space E. Suppose $(\upsilon_n)_{n=1}^{\infty}$ is a sequence in E such that

- $\inf_{n\in\mathbb{Z}_{>0}}\|\upsilon_n\|>0$
- $\lim_{n \to \infty} \omega_k(v_n) = 0$ for all $k \in \mathbb{Z}_{>0}$

Then, $(v_n)_{n=1}^{\infty}$ contains a subsequence that is isomorphically equivalent to some block basic sequence $(\eta_k)_{k=1}^{\infty}$ of $(\xi_n)_{n=1}^{\infty}$.

Proof. "Gliding hump" argument + Principle of small perturbations.

Applications

The Bessaga–Pełczyńki Selection Principle

Sketch of Proof. Let $\alpha := \inf_{n \in \mathbb{Z}_{>0}} \|v_n\|$, $K := K_{(\xi_n)}$. For any $\varepsilon \in (0, \frac{1}{4})$, proceed inductively and get a subsequence $(v_{n_k})_{k=1}^{\infty}$ and a strictly increasing sequence $(\lambda_k)_{k=0}^{\infty}$ such that

$$\|s_{\lambda_{k-1}} \upsilon_{n_k}\| < rac{lpha arepsilon^k}{2K} \quad ext{ and } \quad \|s_{\lambda_k} \upsilon_{n_k} - \upsilon_{n_k}\| < rac{lpha arepsilon^k}{2K} \ orall \ k \geq 1$$

For each $k\geq 1$, define $\eta_k:=s_{\lambda_k}\upsilon_{n_k}-s_{\lambda_{k-1}}\upsilon_{n_k}.$ Then, check that

$$2K\sum_{k=1}^{\infty} \frac{\|\eta_k - \nu_{n_k}\|}{\|\eta_k\|} < \frac{2}{1-\varepsilon}\sum_{k=1}^{\infty} \varepsilon^k = \frac{2\varepsilon}{(1-\varepsilon)^2} < 1$$

Infinite dimensional subspaces

Proposition

Let $(\xi_n)_{n=1}^{\infty}$ be a Schauder basis in a Banach space E and F an infinite dimensional subspace of E. Then, F contains a basic sequence that's isomorphically equivalent to a block basic sequence of $(\xi_n)_{n=1}^{\infty}$.

Proof. Well, for each $n \in \mathbb{Z}_{>0}$ consider the map $\psi_n : F \to \mathbb{C}^n$ given by

$$\psi_n(v) = (\omega_1(v), \ldots, \omega_n(v))$$

Since *F* is infinite dimensional but \mathbb{C}^n isn't, the map ψ_n has a non-trivial kernel and therefore we can choose $v_n \in F$ such that $\|v_n\| = 1$ and $\omega_j(v_n) = 0$ for $1 \le j \le n$. Then, $\inf_{n \in \mathbb{Z}_{>0}} \|v_n\| > 0$ and $\lim_{n \to \infty} \omega_k(v_n) = 0$. Result now follows from the BPSP. Bases in Banach Spaces

Applications

$\ell^p \not\cong \ell^q$ for $p \neq q$ in $[1, \infty)$.

Lemma

Suppose $(\eta_k)_{k=1}^{\infty}$ is a block basic sequence in ℓ^p w.r.t $(\delta_n)_{n=1}^{\infty}$ such that $\inf_k \|\eta_k\| > 0$ and $\sup_k \|\eta_k\| < \infty$. Then $(\eta_k)_{k=1}^{\infty}$ is isomorphically equivalent to $(\delta_n)_{n=1}^{\infty}$.

Proof. Let $C_1 = \inf_k \|\eta_k\|$ and $C_2 = \sup_k \|\eta_k\|$. Then, for any $m \in \mathbb{Z}_{>0}$

$$C_1^p \Big\| \sum_{k=1}^m \alpha_k \delta_k \Big\|_p^p \le \sum_{k=1}^m |\alpha_k|^p \|\eta_k\|_p^p \le C_2^p \Big\| \sum_{k=1}^m \alpha_k \delta_k \Big\|_p^p$$

Since $(\eta_k)_{k=1}^{\infty}$ is a block basic sequence w.r.t $(\delta_n)_{n=1}^{\infty}$,

$$\Big\|\sum_{k=1}^m lpha_k \eta_k\Big\|_p^p = \sum_{k=1}^m |lpha_k|^p \|\eta_k\|_p^p$$

Applications

$\ell^p \not\cong \ell^q$ for $p \neq q$ in $[1, \infty)$.

Theorem (Pitt, 1930)

Let $1 \le p < q < \infty$ and $t \in \mathcal{L}(\ell^q, \ell^p)$. Then $||t(\delta^n)||_p \to 0$ as $n \to \infty$.

Proof. We easily see that $t(\delta_n) \to 0$ weakly in ℓ^p . If $||t(\delta^n)||_p \not\to 0$, both hypotheses of the BPSP are met. Hence, there is $(t(\delta^{n_k}))_{k=1}$ isomorphically equivalent to some block basic sequence $(\eta_k)_{k=1}^{\infty}$ of $(\delta_k)_{k=1}^{\infty}$, the basis of ℓ^p . By lemma, $(\eta_k)_{k=1}^{\infty}$ is isomorphically equivalent to $(\delta_k)_{k=1}^{\infty}$, whence $(t(\delta_{n_k}))_k$ is too. Then, there is a constant C such that

$$\|(\alpha_k)_k\|_p = \left\|\sum_{k=1}^{\infty} \alpha_k \delta_k\right\|_p \le C \left\|\sum_{k=1}^{\infty} \alpha_k t(\delta_{n_k})\right\|_p \le C \|t\| \|(\alpha_k)_k\|_q$$

for all $(\alpha_k)_k \in \ell^p \subset \ell^q$. In particular, $n^{\frac{1}{p}-\frac{1}{q}} \leq C ||t||$ for all $n \geq 1$, which is impossible because p < q.

Bases in Banach Spaces

Applications

$\ell^p \not\cong \ell^q$ for $p \neq q$ in $[1, \infty)$.

Corollary

Let $1 \le p < q < \infty$. Then ℓ^p is not isomorphic to ℓ^q .

Proof. Suppose that there is an isomorphism $t: \ell^q \to \ell^p$. Then, by the previous theorem

$$1 = \|\delta_n\|_q = \|t^{-1}(t(\delta_n))\|_q \le \|t^{-1}\|\|t(\delta_n)\|_p o 0$$
 as $n \to \infty$,

which is absurd.

Disjointly Supported sequence in $L^p[0,1]$ for $p \in [1,\infty)$

Lemma

Let $(f_n)_{n=1}^{\infty}$ be a sequence of norm one functions in $L^p([0,1])$. If $m(\operatorname{supp}(f_n)) \to 0$, then there is a subsequence of (f_n) that's isomorphically equivalent to a disjointly supported sequence in $L^p([0,1])$.

Sketch of Proof. Use the measure, $\mu_n(A) := \int_A |f_n|^p dm$, which is absolutely continuous with respect to m and a "gliding hump" argument to produce a disjointly supported basic sequence $(g_k)_{k=1}^{\infty}$ which is a equivalent to the usual basis of ℓ^p and

$$2\sum_{k=1}^{\infty} \frac{\|g_k - f_{n_k}\|_p}{\|g_k\|_p} < 2\sum_{k=1}^{\infty} \frac{4^{-k}}{\frac{3}{4}} = \frac{8}{3} \cdot \frac{1}{3} < 1.$$

The principle of small perturbations proves that $(f_{n_k})_{k=1}^{\infty}$ is isomorphically equivalent to $(g_k)_{k=1}^{\infty}$

"

Questions?