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Schauder basis

Let E be a normed vector space.

Definition

We say that (ξn)∞n=1, a nonzero sequence in E, is a Schauder
basis for E if for each ξ ∈ E, there is a unique sequence of
complex numbers (αn)∞n=1 such that

ξ =
∞
∑

n=1
αnξn,

that is,
(

∑
k
n=1αnξn

)∞
k=1

converges in norm to ξ.
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Schauder basis

If (ξn)∞n=1 is a Schauder basis for a normed space E, then

span(ξn)n :=

{
k

∑
n=1

αnξn : α1, . . . ,αk ∈ C
}

is a dense subspace of E.

Corollary

Any normed space with a Schauder basis is separable.

However, Per Enflo constructed in 1973 a separable Banach space
that does not have a Schauder basis.
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Examples

Ex. Fix p ∈ [1, ∞). For each n ≥ 1, let δn : Z≥0 → C be
given by

δn(k) = δn,k.

Then, δn ∈ `p and (δn)∞n=1 is a Schauder basis for `p.

NonEx. Let (δn)∞n=1 be as above and let δ0 : Z≥0 → C be
given by

δ0(k) =
1
k

Then, δ0 ∈ `2 but (δn)∞n=0 is not a Schauder basis for `2:

δ0 =
∞
∑

n=1

δn

n
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Coordinate Functionals

Fix a Schauder basis (ξn)∞n=1 of a normed space E.

Definition

For each n ≥ 1 we define a coordinate functional ωn : E→ C by

ωn

( ∞
∑
k=1
αkξk

)
:= αn.

One checks that ωn ∈ E∗ and clearly ωn(ξm) = δn,m.

Definition

For each n ≥ 1 we define sn : E→ E by

sn

( ∞
∑
k=1
αkξk

)
:=

n

∑
k=1
αkξk.
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Coordinate Functionals

Fix a Schauder basis (ξn)∞n=1 of a normed space E. Then,

sn ∈ L(E) is an idempotent and therefore ‖sn‖ ≥ 1.

For each ξ ∈ E we have

sn(ξ) =
n

∑
k=1
ωk(ξ)ξn.

For each ξ ∈ E we have snξ → ξ and supn≥1 ‖sn‖ < ∞.

The constant K(ξn) := supn≥1 ‖sn‖ is called the basis constant
of the basis (ξn)∞n=1.
Of course K(ξn) ≥ 1.
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Basic Sequence

Let E be a normed vector space.

Definition

We say that (ξn)∞n=1 is a basic sequence if (ξn)∞n=1 is a Schauder

basis for span(ξn), its closed linear span.

Every infinite dimensional Banach space contains a basic sequence.
This was shown back in 1933 by Mazur.
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Basic Sequence

To recognize when a sequence of elements in a Banach space is a
basic sequence we use the following test

Proposition (Grunblum’s criterion)

A sequence (ξn)∞n=1 of nonzero elements of a Banach space E is
basic if and only if there is a positive constant K such that∥∥∥ m

∑
k=1
αkξk

∥∥∥ ≤ K
∥∥∥ n

∑
k=1
αkξk

∥∥∥
for every sequence of scalars (αk) and all integers m, n such that
m ≤ n
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Equivalent Basic Sequences.

Let E and F be Banach spaces.

Definition

Two basic sequences (ξn)∞n=1 in E and (ηn)∞n=1 in F are said to be
isomorphically equivalent if for any sequence of scalars (αn)∞n=1

∞
∑

n=1
αnξn converges if and only if

∞
∑

n=1
αnηn converges

The closed graph theorem implies that (ξn)∞n=1 and (ηn)∞n=1 are

isomorphically equivalent if and only if span(ξn) and span(ηn)
are isomorphic via ξn 7→ ηn.
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Equivalent Basic Sequences.

Equivalently, (ξn)∞n=1 and (ηn)∞n=1 are equivalent if there are
constants C1, C2 ∈ (0, ∞) such that

C1

∥∥∥ ∞
∑

n=1
αnηn

∥∥∥ ≤ ∥∥∥ ∞
∑

n=1
αnξn

∥∥∥ ≤ C2

∥∥∥ ∞
∑

n=1
αnηn

∥∥∥
for all sequences of scalars (αn)∞n=1.

Definition

When C1 = C2 = 1, we say that the basic sequences are
isometrically isomorphic.
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Equivalent Basic Sequences

There is a test to check whether a sequence is isomorphically
equivalent to a given basic sequence:

Theorem (Principle of small perturbations)

Let (ξn)∞n=1 be a basic sequence in a Banach space E. If (ηn)∞n=1
is a sequence in E such that

2K(ξn)

∞
∑

n=1

‖ξn − ηn‖
‖ξn‖

= δ < 1

Then (ηn)∞n=1 is a basic sequence equivalent to (ξn)∞n=1.

Alonso Delf́ın Banach Space Techniques



13/23

Bases in Banach Spaces Applications

Principle of small perturbations

Sketch of Proof. Let ωn : span(ξn)→ C the coordinate
functionals. By Hahn Banach these maps extend to linear
functionals ωn : E→ C. The map t : E→ E given by

t(ξ) = ξ +
∞
∑

n=1
ωn(ξ)(ηn −ξn)

is linear and bounded by 1 + δ. It’s also easy to check that
‖t− 1‖ < δ < 1, whence t is invertible. Since t restricts to an
isomorphism span(ξn)→ span(ηn), the result follows. “�”
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Block Basic Sequence

Let (ξn)∞n=1 be a basic sequence in a Banach space E.

Definition

Let λ1 < γ1 < λ2 < γ2 < · · · be an increasing sequence of
integers. For each k ≥ 1 let

ηk :=
γk

∑
j=λk

β jξ j

be any non-zero vector in span(ξλk , . . . ,ξγk). Then (ηk)
∞
k=1 is said

to be a block basic sequence with respect to (ξn)∞n=1.
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Block Basic Sequence

Lemma

Let (ηk)
∞
k=1 be a block basic sequence with respect to the basic

sequence (ξn)∞n=1. Then, (ηk)
∞
k=1 is a basic sequence with basic

constant at most K(ξn).

Proof. We prove this using Grunblum’s criterion. Let m ≤ n,∥∥∥ m

∑
k=1
αkηk

∥∥∥ =
∥∥∥ m

∑
k=1
αk

γk

∑
j=λk

β jξ j

∥∥∥ =
∥∥∥ γm

∑
j=1

c jξ j

∥∥∥ ≤ K(ξn)

∥∥∥ γn

∑
j=1

c jξ j

∥∥∥
= K(ξn)

∥∥∥ n

∑
k=1
αk

γk

∑
j=λk

β jξ j

∥∥∥ = K(ξn)

∥∥∥ n

∑
k=1
αkηk

∥∥∥
where each c j is either αkβ j or 0. �
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The Bessaga–Pe lczyńki Selection Principle

Proposition (Bessaga–Pe lczyńki Selection Principle, BPSP)

Let (ξn)∞n=1 be a Schauder basis in a Banach space E. Suppose
(υn)∞n=1 is a sequence in E such that

infn∈Z>0 ‖υn‖ > 0
limn→∞ωk(υn) = 0 for all k ∈ Z>0

Then, (υn)∞n=1 contains a subsequence that is isomorphically
equivalent to some block basic sequence (ηk)

∞
k=1 of (ξn)∞n=1.

Proof. “Gliding hump” argument + Principle of small
perturbations. �
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The Bessaga–Pe lczyńki Selection Principle

Sketch of Proof. Let α := infn∈Z>0 ‖υn‖, K := K(ξn). For any

ε ∈ (0, 1
4 ), proceed inductively and get a subsequence (υnk)

∞
k=1

and a strictly increasing sequence (λk)
∞
k=0 such that

‖sλk−1υnk‖ <
αεk

2K
and ‖sλkυnk − υnk‖ <

αεk

2K
∀ k ≥ 1

For each k ≥ 1, define ηk := sλkυnk − sλk−1υnk . Then, check that

2K
∞
∑
k=1

‖ηk − υnk‖
‖ηk‖

<
2

1−ε
∞
∑
k=1
εk =

2ε
(1−ε)2 < 1

“�”
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Infinite dimensional subspaces

Proposition

Let (ξn)∞n=1 be a Schauder basis in a Banach space E and F an
infinite dimensional subspace of E. Then, F contains a basic
sequence that’s isomorphically equivalent to a block basic sequence
of (ξn)∞n=1.

Proof. Well, for each n ∈ Z>0 consider the map ψn : F→ Cn

given by
ψn(υ) = (ω1(υ), . . . ,ωn(υ))

Since F is infinite dimensional but Cn isn’t, the map ψn has a
non-trivial kernel and therefore we can choose υn ∈ F such that
‖υn‖ = 1 and ω j(υn) = 0 for 1 ≤ j ≤ n.
Then, infn∈Z>0 ‖υn‖ > 0 and limn→∞ωk(υn) = 0. Result now
follows from the BPSP. �
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`p 6∼= `q for p 6= q in [1, ∞).

Lemma

Suppose (ηk)
∞
k=1 is a block basic sequence in `p w.r.t (δn)∞n=1 such

that infk ‖ηk‖ > 0 and supk ‖ηk‖ < ∞. Then (ηk)
∞
k=1 is

isomorphically equivalent to (δn)∞n=1.

Proof. Let C1 = infk ‖ηk‖ and C2 = supk ‖ηk‖. Then, for any
m ∈ Z>0

Cp
1

∥∥∥ m

∑
k=1
αkδk

∥∥∥p

p
≤

m

∑
k=1
|αk|p‖ηk‖

p
p ≤ Cp

2

∥∥∥ m

∑
k=1
αkδk

∥∥∥p

p

Since (ηk)
∞
k=1 is a block basic sequence w.r.t (δn)∞n=1,∥∥∥ m

∑
k=1
αkηk

∥∥∥p

p
=

m

∑
k=1
|αk|p‖ηk‖

p
p

�
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`p 6∼= `q for p 6= q in [1, ∞).

Theorem (Pitt, 1930)

Let 1 ≤ p < q < ∞ and t ∈ L(`q, `p). Then ‖t(δn)‖p → 0 as
n→ ∞.

Proof. We easily see that t(δn)→ 0 weakly in `p. If
‖t(δn)‖p 6→ 0, both hypotheses of the BPSP are met. Hence,
there is (t(δnk))k=1 isomorphically equivalent to some block basic
sequence (ηk)

∞
k=1 of (δk)

∞
k=1, the basis of `p. By lemma, (ηk)

∞
k=1 is

isomorphically equivalent to (δk)
∞
k=1, whence (t(δnk))k is too.

Then, there is a constant C such that

‖(αk)k‖p =
∥∥∥ ∞

∑
k=1
αkδk

∥∥∥
p
≤ C

∥∥∥ ∞
∑
k=1
αkt(δnk)

∥∥∥
p
≤ C‖t‖‖(αk)k‖q

for all (αk)k ∈ `p ⊂ `q. In particular, n
1
p−

1
q ≤ C‖t‖ for all n ≥ 1,

which is impossible because p < q. �
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`p 6∼= `q for p 6= q in [1, ∞).

Corollary

Let 1 ≤ p < q < ∞. Then `p is not isomorphic to `q.

Proof. Suppose that there is an isomorphism t : `q → `p. Then,
by the previous theorem

1 = ‖δn‖q = ‖t−1(t(δn))‖q ≤ ‖t−1‖‖t(δn)‖p → 0 as n→ ∞,

which is absurd. �
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Disjointly Supported sequence in Lp[0, 1] for p ∈ [1, ∞)

Lemma

Let ( fn)∞n=1 be a sequence of norm one functions in Lp([0, 1]). If
m(supp( fn))→ 0, then there is a subsequence of ( fn) that’s
isomorphically equivalent to a disjointly supported sequence in
Lp([0, 1]).

Sketch of Proof. Use the measure, µn(A) :=
∫

A | fn|pdm, which
is absolutely continuous with respect to m and a “gliding hump”
argument to produce a disjointly supported basic sequence (gk)

∞
k=1

which is a equivalent to the usual basis of `p and

2
∞
∑
k=1

‖gk − fnk‖p

‖gk‖p
< 2

∞
∑
k=1

4−k

3
4

=
8
3
· 1

3
< 1.

The principle of small perturbations proves that ( fnk)
∞
k=1 is

isomorphically equivalent to (gk)
∞
k=1 “�”
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Questions?
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